metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(ethylxanthato- κ^2 S,S')(1,10-phenanthroline)bismuth(III)

Feng Li, Han-Dong Yin,* Jun Zhai and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059. People's Republic of China Correspondence e-mail: handongyin@lcu.edu.cn

Received 21 April 2007; accepted 23 April 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.028 Å; R factor = 0.068; wR factor = 0.191; data-to-parameter ratio = 15.8.

The title compound, $[Bi(C_3H_5OS_2)_3(C_{12}H_8N_2)]$ [systematic name: tris(ethoxymethanedithioato- $\kappa^2 S, S'$)(1,10-phenanthroline)bismuth(III)], is monomeric, with the Bi atom chelated by the S atoms of three ethylxanthate ligands and the N atoms of 1,10-phenanthroline. The central Bi^{III} atom is eightcoordinate and adopts a distorted capped-pentagonal-bipyramidal geometry. In the crystal structure, weak C-H···S interactions and a close $S \cdots S$ contact stabilize the structure $[S \cdot \cdot \cdot S = 3.509 (3) \text{ Å}].$

Related literature

For uses of Bi^{III} complexes, see: Sun et al. (1997) and Baxter (1992). For related Bi^{III} compounds with xanthate ligands, see, for example, Snow & Tiekink (1987) and Hoskins et al. (1985), and with phenanthroline ligands, see, for example, Li et al. (2005).

Experimental

Crystal data

[Bi(C₃H₅OS₂)₃(C₁₂H₈N₂)] $\gamma = 91.737 \ (2)^{\circ}$ $M_r = 752.75$ Z = 2Triclinic, P1 a = 10.7569 (16) Åb = 11.1985(17) Å c = 11.2494 (17) Å $\alpha = 96.306 (2)^{\circ}$ $\beta = 91.127 (2)^{\circ}$

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.348, T_{\max} = 0.364$ (expected range = 0.269-0.282)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.191$ S = 1.044698 reflections 298 parameters

Table 1 Hydrogen-bond geometry (Å, °).

, , ,		/		
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2-H2A\cdots S4^{i}$	0.97	2.78	3.660 (19)	152
$C5-H5B\cdots S3^{ii}$	0.97	2.90	3.851 (17)	167
$C20-H20$ ··· $S2^{iii}$	0.93	2.99	3.73 (2)	138

2.99 Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 2; (iii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation, and the State Key Laboratory of Crystal Materials, Shandong University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2303).

References

- Baxter, G. F. (1992). Chem. Ber. 28, 445-448.
- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Hoskins, B. F., Tiekink, E. R. T. & Winter, G. (1985). Inorg. Chim. Acta, 99, 177 - 182
- Li, F., Yin, H.-D. & Wang, D.-Q. (2005). Acta Cryst. E61, m2541-m2543.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Snow, M. R. & Tiekink, E. R. T. (1987). Aust. J. Chem. 40, 743-750. Sun, H., Li, H. & Sadler, P. J. (1997). Chem. Ber. 130, 669-708.

V = 1345.9 (4) Å³ Mo $K\alpha$ radiation $\mu = 7.04 \text{ mm}^{-1}$ T = 298 (2) K $0.19 \times 0.18 \times 0.18 \text{ mm}$

7132 measured reflections 4698 independent reflections 3872 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$

551 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 2.99 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -3.37 \text{ e } \text{\AA}^{-3}$

Acta Cryst. (2007). E63, m1544 [doi:10.1107/S1600536807020338]

Tris(ethylxanthato- $\kappa^2 S, S'$)(1,10-phenanthroline)bismuth(III)

F. Li, H.-D. Yin, J. Zhai and D.-Q. Wang

Comment

There has recently been increasing interest in bismuth(III) coordination chemistry, particularly in the light of the role of bismuth compounds in 212 Bi isotope therapy in cancer research (Sun *et al.*, 1997) and the use of bismuth complexes in the treatment of peptic ulcers (Baxter *et al.*, 1992). In particular, the interaction of bismuth(III) salts with chelating nitrogen-base ligands has been actively studied. In view of above and persuance of our interest in sulfur-containing ligands (Li *et al.*, 2005), we report here the synthesis and structure of the title compound, (I).

In this complex the bismuth atom is eight-coordinated by sulfur atoms belonging to three bidenate ethylxanthate ligands and by the nitrogen atoms of the bidenate 1,10-phenanthroline. The central Bi atom is eight-coordinate with atoms S4 and N1 in axial positions, and atoms S1, S2, S3, S5 and S6 in the equatorial plane. The remaining N atom (N2) of the 1,10-phenanthroline ligand caps the S2/S5/N1 face, giving a highly distorted capped pentagonal bipyramidal coordination geometry. Three Bi—S bonds [to S2, S3 and S5; mean = 2.897 Å] are significantly longer than the others [to S1, S4 and S6; mean = 2.805 Å], suggesting some delocalization in the system. In addition, the chelating phenanthroline ligands are bonded to the Bi atom through two N atoms. The Bi1—N1 and Bi1—N2 distances fall in the same range as in other Bi/N complexes (Li *et al.*, 2005).

The structure is stabilized by weak C—H···S interactions, Table 1, and a close S2···S2ⁱ contact 3.496 Å, i = 1 - x, 1 - y, 1 - z.

Experimental

To a stirred solution of BiI_3 (0.2 mmol) in acetonitrile (20 ml), $C_2H_5OCS_2Na$ (0.6 mmol) was added. The reaction mixture was stirred for 2.5 h at 298 K. An orange solution was obtained and then filtered. The solvent was gradually removed by evaporation under vacuum to give a solid product which was recrystallized from ethanol yielding orange-red crystals of (I).

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms [C—H = 0.93Å with $U_{iso}(H) = 1.2U_{eq}$ for aromatic, C—H = 0.97Å with $U_{iso}(H) = 1.2U_{eq}$ for CH₂, and C—H = 0.96Å with $U_{iso}(H) = 1.5U_{eq}$ for CH₃ H atoms].

Figures

Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Fig. 2. Crystal packing of the title complex. The S…S interaction is shown as a dashed line.

$tris (ethoxymethanedithioato-\kappa^2 S, S') (1, 10-phenanthroline) bismuth (III),$

$[Bi(C_3H_5OS_2)_3(C_{12}H_8N_2)]$	Z = 2
$M_r = 752.75$	$F_{000} = 732$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.857 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 10.7569 (16) Å	Cell parameters from 2951 reflections
b = 11.1985 (17) Å	$\theta = 2.4 - 24.6^{\circ}$
c = 11.2494 (17) Å	$\mu = 7.04 \text{ mm}^{-1}$
$\alpha = 96.306 \ (2)^{\circ}$	T = 298 (2) K
$\beta = 91.127 \ (2)^{\circ}$	Block, orange-red
$\gamma = 91.737 \ (2)^{\circ}$	$0.19 \times 0.18 \times 0.18 \text{ mm}$
$V = 1345.9 (4) \text{ Å}^3$	

Data collection

4698 independent reflections
3872 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.020$
$\theta_{\text{max}} = 25.0^{\circ}$
$\theta_{\min} = 1.8^{\circ}$
$h = -12 \rightarrow 12$
$k = -11 \rightarrow 13$

-13-	→13
	-13-

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H-atom parameters constrained
$wR(F^2) = 0.191$	$w = 1/[\sigma^2(F_o^2) + (0.1041P)^2 + 18.5625P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
4698 reflections	$\Delta \rho_{max} = 2.99 \text{ e } \text{\AA}^{-3}$
298 parameters	$\Delta \rho_{\rm min} = -3.36 \text{ e } \text{\AA}^{-3}$
551 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Bi1	0.68014 (5)	0.26489 (5)	0.68287 (5)	0.0469 (2)
N1	0.9283 (13)	0.2752 (14)	0.6203 (14)	0.065 (4)
N2	0.8064 (13)	0.4878 (13)	0.6736 (13)	0.058 (3)
01	0.5261 (14)	0.2467 (13)	0.2990 (10)	0.0870 (17)
O2	0.3121 (9)	0.3057 (9)	0.8709 (10)	0.059 (3)
O3	0.8331 (13)	0.0829 (12)	1.0024 (12)	0.0844 (17)
S1	0.6586 (6)	0.1155 (5)	0.4631 (5)	0.0859 (10)
S2	0.5384 (5)	0.3490 (5)	0.4953 (5)	0.0749 (9)
S3	0.5113 (4)	0.4325 (4)	0.8153 (4)	0.0614 (9)
S4	0.4617 (4)	0.1707 (4)	0.7510 (4)	0.0576 (9)
S5	0.7886 (5)	0.2739 (5)	0.9215 (5)	0.0744 (10)
S6	0.7602 (5)	0.0435 (5)	0.7627 (5)	0.0768 (10)
C1	0.5798 (19)	0.226 (2)	0.4120 (14)	0.0798 (13)
C2	0.556 (2)	0.1502 (16)	0.2132 (14)	0.0860 (18)
H2A	0.5239	0.0751	0.2376	0.103*
H2B	0.6459	0.1456	0.2079	0.103*

C3	0.500 (2)	0.170 (2)	0.0914 (12)	0.091 (4)
H3A	0.5227	0.1053	0.0330	0.137*
H3B	0.5310	0.2447	0.0683	0.137*
H3C	0.4111	0.1708	0.0962	0.137*
C4	0.4271 (12)	0.3071 (15)	0.8151 (15)	0.0565 (17)
C5	0.2697 (13)	0.4150 (12)	0.9345 (16)	0.062 (2)
H5A	0.2696	0.4785	0.8824	0.075*
H5B	0.3246	0.4402	1.0027	0.075*
C6	0.1380 (13)	0.3907 (17)	0.9765 (17)	0.073 (4)
H6A	0.1078	0.4627	1.0190	0.110*
H6B	0.1392	0.3282	1.0284	0.110*
H6C	0.0844	0.3661	0.9084	0.110*
C7	0.7962 (18)	0.1240 (18)	0.8926 (15)	0.0732 (16)
C8	0.834 (2)	-0.0378 (13)	1.0278 (15)	0.084 (2)
H8A	0.8944	-0.0816	0.9786	0.101*
H8B	0.7528	-0.0762	1.0105	0.101*
C9	0.869 (2)	-0.0387 (18)	1.1604 (15)	0.085 (3)
H9A	0.8659	-0.1200	1.1803	0.127*
H9B	0.8108	0.0078	1.2084	0.127*
Н9С	0.9512	-0.0046	1.1758	0.127*
C10	0.9895 (19)	0.176 (2)	0.5929 (19)	0.077 (4)
H10	0.9457	0.1026	0.5832	0.093*
C11	1.1189 (19)	0.178 (2)	0.5778 (19)	0.080 (4)
H11	1.1592	0.1066	0.5582	0.096*
C12	1.183 (2)	0.279 (2)	0.5911 (19)	0.079 (4)
H12	1.2682	0.2788	0.5803	0.095*
C13	1.1268 (18)	0.386 (2)	0.6206 (17)	0.071 (3)
C14	0.9958 (16)	0.3812 (18)	0.6365 (16)	0.065 (3)
C15	0.9313 (17)	0.4899 (18)	0.6645 (16)	0.066 (3)
C16	1.0006 (19)	0.6024 (19)	0.6805 (17)	0.071 (4)
C17	0.927 (2)	0.713 (2)	0.7052 (19)	0.082 (4)
H17	0.9666	0.7882	0.7168	0.098*
C18	0.810 (2)	0.7007 (19)	0.7100 (18)	0.078 (4)
H18	0.7633	0.7693	0.7238	0.093*
C19	0.748 (2)	0.5882 (17)	0.6955 (17)	0.070 (4)
H19	0.6617	0.5847	0.7016	0.084*
C20	1.1907 (19)	0.500 (2)	0.6358 (19)	0.079 (4)
H20	1.2761	0.5034	0.6250	0.094*
C21	1.132 (2)	0.602 (2)	0.6652 (19)	0.080 (4)
H21	1.1772	0.6744	0.6758	0.096*

Atomic displacement parameters $(Å^2)$ U^{22} U^{13} U^{11} U^{33} U^{12} U^{23} 0.0048 (2) Bi1 0.0363 (3) 0.0425 (3) 0.0620 (4) 0.0043 (2) 0.0022 (2) N1 0.044 (8) 0.066 (9) 0.084 (10) 0.011 (7) 0.008 (7) 0.009 (8) N2 0.050 (8) 0.054 (8) 0.073 (9) 0.000 (6) 0.005 (7) 0.011 (7) 01 0.082 (3) 0.093 (3) 0.084 (3) -0.004 (3) -0.006(3) 0.001 (3)

02	0.044 (6)	0.062 (7)	0.070 (7)	0.000 (5)	0.009 (5)	0.003 (6)
03	0.075 (3)	0.079 (3)	0.101 (3)	0.006 (3)	-0.003 (3)	0.022 (3)
S1	0.083 (2)	0.083 (2)	0.0848 (16)	0.0011 (17)	-0.0008 (18)	-0.0202 (15)
S2	0.0680 (19)	0.0842 (19)	0.0747 (17)	0.0015 (16)	-0.0100 (14)	0.0212 (15)
S3	0.0544 (18)	0.0551 (18)	0.0737 (19)	0.0008 (15)	0.0079 (16)	0.0006 (16)
S4	0.0477 (17)	0.0510 (17)	0.0740 (19)	0.0001 (15)	0.0071 (16)	0.0064 (16)
S5	0.073 (2)	0.077 (2)	0.0748 (14)	0.0058 (18)	-0.0127 (16)	0.0148 (16)
S6	0.068 (2)	0.0621 (19)	0.102 (2)	0.0078 (17)	-0.0019 (18)	0.0134 (18)
C1	0.073 (3)	0.095 (3)	0.0685 (17)	-0.016 (2)	-0.010 (2)	0.0006 (19)
C2	0.080 (3)	0.093 (3)	0.082 (3)	-0.004 (3)	-0.005 (3)	-0.001 (3)
C3	0.086 (6)	0.101 (7)	0.084 (6)	-0.004 (6)	-0.008 (6)	-0.001 (6)
C4	0.047 (3)	0.053 (3)	0.069 (3)	0.003 (3)	0.006 (3)	0.003 (3)
C5	0.054 (4)	0.060 (4)	0.071 (4)	0.003 (4)	0.008 (4)	-0.001 (4)
C6	0.060 (7)	0.079 (7)	0.079 (7)	0.006 (6)	0.013 (6)	-0.001 (7)
C7	0.064 (3)	0.068 (3)	0.089 (3)	0.006 (3)	-0.004 (3)	0.017 (3)
C8	0.074 (4)	0.076 (4)	0.102 (4)	0.005 (4)	-0.003 (4)	0.016 (4)
C9	0.074 (6)	0.084 (6)	0.098 (6)	0.003 (6)	-0.004 (6)	0.022 (6)
C10	0.062 (8)	0.091 (9)	0.083 (8)	0.015 (8)	0.011 (7)	0.025 (8)
C11	0.063 (8)	0.103 (9)	0.080 (8)	0.025 (8)	0.011 (7)	0.028 (8)
C12	0.060 (7)	0.106 (9)	0.076 (7)	0.005 (7)	0.005 (7)	0.028 (7)
C13	0.057 (7)	0.096 (8)	0.066 (7)	0.000 (6)	0.001 (6)	0.031 (7)
C14	0.051 (6)	0.085 (7)	0.064 (7)	-0.003 (6)	0.002 (6)	0.029 (6)
C15	0.060 (7)	0.079 (7)	0.063 (6)	-0.018 (6)	0.002 (6)	0.023 (6)
C16	0.069 (7)	0.082 (7)	0.064 (7)	-0.017 (7)	-0.002 (6)	0.022 (6)
C17	0.089 (8)	0.076 (8)	0.078 (8)	-0.024 (8)	0.001 (8)	0.011 (7)
C18	0.088 (9)	0.069 (8)	0.077 (8)	-0.007 (8)	0.005 (8)	0.011 (7)
C19	0.073 (8)	0.065 (8)	0.074 (8)	-0.005 (7)	0.006 (7)	0.021 (7)
C20	0.060 (7)	0.102 (8)	0.076 (7)	-0.016 (7)	-0.005 (6)	0.026 (7)
C21	0.070 (7)	0.093 (8)	0.078 (7)	-0.027 (7)	-0.004 (7)	0.023 (7)

Geometric parameters (Å, °)

Bi1—S4	2.706 (4)	С5—Н5А	0.9700
Bi1—N1	2.776 (14)	С5—Н5В	0.9700
Bi1—N2	2.819 (14)	С6—Н6А	0.9600
Bi1—S1	2.830 (5)	С6—Н6В	0.9600
Bi1—S2	2.839 (5)	С6—Н6С	0.9600
Bi1—S6	2.878 (5)	C8—C9	1.532 (11)
Bi1—S5	2.896 (5)	C8—H8A	0.9700
Bi1—S3	2.956 (5)	C8—H8B	0.9700
N1—C10	1.32 (2)	С9—Н9А	0.9600
N1	1.37 (2)	С9—Н9В	0.9600
N2—C19	1.31 (2)	С9—Н9С	0.9600
N2—C15	1.35 (2)	C10-C11	1.41 (3)
O1—C2	1.417 (11)	С10—Н10	0.9300
O1—C1	1.432 (10)	C11—C12	1.30 (3)
O2—C4	1.399 (10)	C11—H11	0.9300
O2—C5	1.440 (10)	C12—C13	1.37 (3)
O3—C8	1.412 (10)	C12—H12	0.9300

O3—C7	1.418 (10)	C13—C20	1.42 (3)
S1—C1	1.67 (2)	C13—C14	1.42 (3)
S2—C1	1.66 (2)	C14—C15	1.43 (3)
S3—C4	1.648 (16)	C15—C16	1.44 (3)
S4—C4	1.671 (17)	C16—C21	1.42 (3)
S5—C7	1.68 (2)	C16—C17	1.49 (3)
S6—C7	1.66 (2)	C17—C18	1.27 (3)
C2—C3	1.527 (11)	C17—H17	0.9300
C2—H2A	0.9700	C18—C19	1.40 (3)
C2—H2B	0.9700	C18—H18	0.9300
С3—НЗА	0.9600	С19—Н19	0.9300
С3—Н3В	0.9600	C20—C21	1.34 (3)
С3—НЗС	0.9600	C20—H20	0.9300
C5—C6	1.528 (10)	C21—H21	0.9300
S4—Bi1—N1	158 8 (3)	O2—C5—H5A	110.1
S4—Bi1—N2	141.0 (3)	C6—C5—H5A	110.1
N1—Bi1—N2	59.3 (4)	02—C5—H5B	110.1
S4—Bi1—S1	89.76 (16)	C6—C5—H5B	110.1
N1—Bi1—S1	82.0 (4)	Н5А—С5—Н5В	108.4
N2—Bi1—S1	115.4 (3)	C5—C6—H6A	109.5
S4—Bi1—S2	85.59 (15)	C5—C6—H6B	109.5
N1—Bi1—S2	107.4 (3)	Н6А—С6—Н6В	109.5
N2—Bi1—S2	81.2 (3)	C5—C6—H6C	109.5
S1—Bi1—S2	62.52 (18)	Н6А—С6—Н6С	109.5
S4—Bi1—S6	79.10 (15)	H6B—C6—H6C	109.5
N1—Bi1—S6	80.3 (3)	O3—C7—S6	128.5 (15)
N2—Bi1—S6	131.5 (3)	O3—C7—S5	105.5 (13)
S1—Bi1—S6	80.86 (18)	S6—C7—S5	125.9 (9)
S2—Bi1—S6	140.30 (17)	O3—C8—C9	108.3 (10)
S4—Bi1—S5	92.46 (15)	O3—C8—H8A	110.0
N1—Bi1—S5	82.3 (4)	С9—С8—Н8А	110.0
N2—Bi1—S5	85.4 (3)	O3—C8—H8B	110.0
S1—Bi1—S5	141.62 (18)	С9—С8—Н8В	110.0
S2—Bi1—S5	155.84 (17)	H8A—C8—H8B	108.4
S6—Bi1—S5	62.06 (16)	С8—С9—Н9А	109.5
S4—Bi1—S3	63.13 (13)	С8—С9—Н9В	109.5
N1—Bi1—S3	135.0 (3)	Н9А—С9—Н9В	109.5
N2—Bi1—S3	78.2 (3)	С8—С9—Н9С	109.5
S1—Bi1—S3	133.69 (16)	Н9А—С9—Н9С	109.5
S2—Bi1—S3	77.74 (15)	Н9В—С9—Н9С	109.5
S6—Bi1—S3	124.66 (15)	N1-C10-C11	122 (2)
S5—Bi1—S3	79.91 (15)	N1—C10—H10	119.0
C10—N1—C14	117.5 (17)	C11—C10—H10	119.0
C10—N1—Bi1	120.9 (13)	C12—C11—C10	121 (2)
C14—N1—Bi1	120.8 (12)	C12—C11—H11	119.7
C19—N2—C15	120.2 (16)	C10—C11—H11	119.7
C19—N2—Bi1	120.4 (12)	C11—C12—C13	121 (2)
C15—N2—Bi1	118.7 (12)	C11—C12—H12	119.3
C2—O1—C1	108.3 (14)	C13—C12—H12	119.3

C4—O2—C5	119.1 (11)	C12—C13—C20	124.3 (19)
C8—O3—C7	126.5 (15)	C12—C13—C14	117 (2)
C1—S1—Bi1	86.4 (7)	C20—C13—C14	119 (2)
C1—S2—Bi1	86.2 (6)	N1-C14-C13	121.8 (19)
C4—S3—Bi1	81.0 (5)	N1-C14-C15	118.4 (16)
C4—S4—Bi1	88.8 (4)	C13—C14—C15	119.7 (18)
C7—S5—Bi1	85.4 (5)	N2-C15-C14	120.7 (16)
C7—S6—Bi1	86.3 (6)	N2-C15-C16	120.1 (19)
O1—C1—S2	100.1 (13)	C14—C15—C16	119.2 (18)
O1—C1—S1	135.4 (16)	C21—C16—C15	119 (2)
S2—C1—S1	124.5 (9)	C21—C16—C17	124.7 (19)
O1—C2—C3	109.7 (10)	C15—C16—C17	116.5 (18)
O1—C2—H2A	109.7	C18—C17—C16	118 (2)
С3—С2—Н2А	109.7	C18—C17—H17	120.8
O1—C2—H2B	109.7	С16—С17—Н17	120.8
С3—С2—Н2В	109.7	C17—C18—C19	122 (2)
H2A—C2—H2B	108.2	C17—C18—H18	118.8
С2—С3—НЗА	109.5	C19—C18—H18	118.8
С2—С3—Н3В	109.5	N2-C19-C18	122 (2)
НЗА—СЗ—НЗВ	109.5	N2-C19-H19	118.8
С2—С3—Н3С	109.5	С18—С19—Н19	118.8
НЗА—СЗ—НЗС	109.5	C21—C20—C13	122 (2)
НЗВ—СЗ—НЗС	109.5	C21—C20—H20	119.0
O2—C4—S3	121.3 (12)	С13—С20—Н20	119.0
O2—C4—S4	111.7 (11)	C20-C21-C16	122 (2)
S3—C4—S4	127.0 (7)	C20—C21—H21	119.2
O2—C5—C6	108.0 (9)	C16—C21—H21	119.2

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$		
C2—H2A···S4 ⁱ	0.97	2.78	3.660 (19)	152		
C5—H5B···S3 ⁱⁱ	0.97	2.90	3.851 (17)	167		
C20—H20…S2 ⁱⁱⁱ	0.93	2.99	3.73 (2)	138		
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+2$; (iii) $-x+2$, $-y+1$, $-z+1$.						

